Existence of Multiple Periodic Solutions for Three Models with Harvesting in Mathematical Biology 三类具有收获率的生物数学模型周期解的存在性
Mathematical Medicine and Biology: A Journal of the IMA. 数理医药学与生物学:数学及其应用学会杂志。
This course introduces the mathematical modeling techniques needed to address key questions in modern biology. 本课程介绍近代生物学上需要提出重要问题的数学模型方法。
Dynamical systems examples from mathematical biology and population dynamics. 来自生物数学和种群动力学的动力系统的例子。
The paper originated a new approach to the mathematical theory of pattern formation, in biology and beyond. 对生物学和之外的学科中的形态产生的数学理论,这篇文章开创出了一个新的对待方法。
With the global habitat destruction and fragmentation, metapopulation approaches have become one of the most important tools in mathematical ecology, theoretical ecology and conservation biology. 随着全球范围的生境破坏和破碎化,集合种群的研究方法已成为数学生态学、理论生态学和保护生物学的重要手段。
Many mathematical models in the fields of physics, chemistry, biology and geology can be boiled down to the fixed solution problem of linear or nonlinear partial differential equations ( PDE.) 物理、化学、生物、地质等领域的很多模型都可归结为线性或非线性偏微分方程的定解问题。
To obtain the mathematical description and the properties of biology skin tissue conduction under various heat condition, a single-layer model and a multi-layer model of skin conduction are established respectively in one-dimensional Cartesian and cylindrical coordinates. 为了获得生物皮肤组织在不同条件下传热特性的数学模型及其传热规律,分别在一维直角坐标系和一维圆柱坐标系下,建立了稳态条件下基于皮肤组织单层结构和多层结构的传热数学模型。
Introduction to Common Mathematical methods in Biology 浅谈生物学中常用的数学方法
Compared with the determinate mathematical biology model, species ecology systems are often subject to environmental noise, it is important to discover whether the presence of a such noise affects these results that we have obtained. 与确定性生物数学模型相比较,在现实生活中种群生态系统经常会遇到环境白噪声的干扰,研究环境白噪声的存在是否影响种群生态系统以及是否会使已有的结果发生变化已受到广泛的关注。
This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, such as directed graphs and undirected graphs, linear combination model, weight matrices model, Bayesian networks model, and mutual-information networks model, so on and so forth. 本文回顾了已在计算机生物学以及生物学中采用的用于描述基因调控系统的方法,如有向图、线性组合模型、加权矩阵模型、布尔网络以及互信息关联网络模型等。
Mathematical Models in Systems Biology and Their Applications 系统生物学中的数学模型方法及其应用
Partial functional differential equations come from many mathematical models in physics, biology, engineering and other fields, which have strongly practical background. 偏泛函微分方程来源于物理学、生物学、工程学等学科领域中众多的数学模型,具有强烈的实际背景。
The equation has recently attracted a lot of attention in the context of chemical kinetics and mathematical biology. 这个方程被广泛地应用于化学动力学和数学生物学。
The theory of nonlinear impulsive differential equations is a new and important branch of differential equation, which originates from some mathematical model of biology, medicine. 非线性脉冲微分方程理论来源于生物学和医学的一些数学模型,是微分方程中一个新的重要分支。
The research of pluralistic tropical analysis in the mathematical model of biology science 生物数学模型中的回归分析研究
The functional differential equations with periodic delays represent a natural framework for mathematical modeling of many real world phenomena such as biology, economy, ecology, automatic control and so on. 带有周期时滞的泛函微分方程在生物学、经济学、生态学和自动控制等实际问题中有着广泛的应用。
The research of mathematical biology model has got the extensive application through the development of a century. 经过一个世纪的发展,生物数学模型的研究得到了广泛的应用,同时也产生了微分方程的参数估计问题。
Delay differential equations arise in many areas of mathematical modelings, for example, con-trol systems, cell biology, lasers and population growth. 科学和工程中的许多问题是由时滞微分方程来描述的,例如:控制系统、细胞生物学、激光器以及人口增长模型等。
Many mathematical models in physics, mechanics, biology and astronomy are given in such forms. 许多物理、力学、生物学以及天文学问题的数学模型都是由连续的和离散的迭代过程描述的。
The fourth part is classified, for example on the mathematical model of the biology teaching in the middle school, and to design a model of biology teaching in the middle school mathematics teaching. 第四部分是对中学生物教学中存在的数学模型进行归类、举例,并对中学生物教学数学模型教学进行设计。
The inverse problems in mathematical physics originated from various practical problems in physics, biology, medicine and geography, etc.. 数学物理反问题是源于物理、生物、医学、地质等众多科学领域中的实际问题,经过数学建模而产生的一个新兴交叉学科领域。
Reaction-diffusion partial differential equations have a wide range of applications in most fields of mathematical physics, chemistry, biology and so on, such as in space to describe the spread of populations, in chemical physics to describe concentration and temperature distributions. 在数学物理、化学、生物学等许多领域都有广泛的应用,如在空间领域用以描述人口的传播,在物理化学领域用以描述浓度和温度的分布等。
Biomathematics is an interdisciplinary subject between mathematics and biology that uses a variety of mathematical thought as its research methods so as to solve the biological problems. It theoretically studies the mathematical methods that are relevant to biology. 生物数学是一门生物学与数学之间的边缘学科,它以多种数学思想为研究方法,解决生物学问题,并对与生物学有关的数学方法进行理论研究。
This device plays a very important role in mathematical biology as the parameter can be obtained from relevant experiments, and mathematical results obtained can be easily to conduct. 这个装置在生物数学领域的研究中起着重要的作用,因为通过这个装置的相关实验可以得到模型需要的参数值,并且得到的数学结果是容易处理的。
With the rapid expansion of mathematical biology, mathematical models are used to study more and more problems of ecological and natural resources. 生物数学的快速发展使得越来越多的生态及自然资源的开发与保护问题可以通过建立数学模型来进行分析和研究。
Chemostat model is one of the most significant models in Mathematical biology. 恒化器模型是生物数学中重要的模型之一。
Lotka-Volterra model and chemostat model are two kinds of the most significant models in Mathematical biology. Lotka-Volterra模型和恒化器模型是两类重要的生物数学模型。
Eco-epidemiology is a newly emerged cross discipline and now has been the frontiers and hotspots in the research of mathematical biology. 生态传染病学这一新兴的交叉学科已成为当今生物数学研究中的前沿与热点。
Lotka-Volterra systems are one of the most classical and important systems in mathematical biology research field, which were initially independently proposed in the 1920s by the American population expert Lotka when researching chemical re-action and the Italian mathematician Volterra when studying fish competition. Lotka-Volterra系统是数学生物学研究领域中最为经典和重要的系统之一,于20世纪20年代最初由美国种群学家Lotka研究化学反应和意大利数学家Volterra研究鱼类竞争时分别独立提出的。